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Abstract: Honeybees produce royal jelly (R]) from their cephalic glands. Royal jelly is a source
of nutrition for the queen honey bee throughout its lifespan and is also involved in fertility
and longevity. Royal jelly has long been considered beneficial to human health. We recently
observed that R] delayed impairment of motor function during aging, affecting muscle fiber size.
However, how RJ affects skeletal muscle metabolism and the functional component of R] is as of
yet unidentified. We demonstrate that feeding mice with R] daily prevents a decrease in myofiber
size following denervation without affecting total muscle weight. RJ did not affect atrophy-related
genes but stimulated the expression of myogenesis-related genes, including IGF-1 and IGF receptor.
Trans-10-hydroxy-2-decenoic acid (10H2DA) and 10-hydroxydecanoic acid (I0HDAA), two major
fatty acids contained in RJ. After ingestion, 10H2DA and 10HDAA are metabolized into 2-decenedioic
acid (2DA) and sebacic acid (SA) respectively. We found that 10H2DA, 10HDAA, 2DA, and SA all
regulated myogenesis of C2C12 cells, murine myoblast cells. These novel findings may be useful for
potential preventative and therapeutic applications for muscle atrophy disease included in Sarcopenia,
an age-related decline in skeletal muscle mass and strength.

Keywords: skeletal muscle; royal jelly; myoblasts; atrophy; denervation

1. Introduction

Sarcopenia is an age-related decline in skeletal muscle mass and strength [1]. Loss of muscle mass
gives rise to adverse consequences such as increased insulin resistance, poor quality of life, dependency,
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hospitalization, and ultimately an increase in mortality [2]. Muscle fiber degeneration and impaired
satellite cell regeneration contribute to Sarcopenia. Muscle fiber degeneration is mostly a consequence
of neuromuscular dysfunction and denervation [3-5], while impaired satellite-cell regenerative capacity
is due to a combination of reduced satellite cell numbers and decreased differentiation potential [6-8].
With the rapid aging of society worldwide, there is an urgent need for therapeutic strategies that will
improve skeletal muscle mass and function in aging adults.

Satellite cells are skeletal muscle stem cells that reside beneath the basal lamina. Satellite cells play
a central role in postnatal muscle growth, repair, and regeneration in adults. Upon activation, satellite
cells proliferate extensively and upregulate expression of MyoD, followed by increasing myogenic
differentiation marker genes such as myogenin, muscle creatine kinase (Mck), and myosin heavy chain
(Myhc) [9-11]. Under conditions of skeletal muscle atrophy, such as Sarcopenia, the rate of muscle
fiber loss or degradation surpasses that of de novo myogenesis of satellite cells. Thus, the attenuation
of catabolic process and/or stimulation of anabolic process in skeletal muscle metabolism are potential
candidates for the treatment for skeletal muscle atrophy diseases.

Honeybees (e.g., Apis mellifera) produce royal jelly (R]) from their cephalic glands. Royal jelly is a
source of nutrition for the queen honey bee throughout its lifespan and is also involved in fertility and
longevity. R] has long been considered beneficial to health [12,13]. Animal experiments suggest that
R]J prolongs life span [14,15], reduces fatigue [16], and contains antioxidant and anti-inflammatory
properties [17-19]. In human trials, R] decreases total serum cholesterol and total serum lipids [20].

Royal jelly is composed of water (60-70%), proteins (9-18%), sugars (7.5-23%), lipids (3—8%),
and other trace compounds. The two major fatty acids in RJ are trans-10-hydroxy-2-decenoic acid
(10H2DA) and 10-hydroxydecanoic acid (10HDAA), which comprise 60-80% of R] lipids [21]. 10H2DA
and 10HDAA have been shown to be pharmacologically active in animal experiments, thus providing
a possible mechanism for the therapeutic effects of RJ [22-26]. In contrast, proteins contained in R]
occasionally induce anaphylactic reaction [27-29]. Major royal jelly protein 1(MRJP) is a frequent
allergen for honey-related allergies [30]. To eliminate such adverse events with R] supplementation,
protease-treated R] (pR]) has been developed by treating RJ with alkaline proteases, leading to complete
elimination of MRJP without nutritional loss of minerals, vitamins, and fatty acids [31].

Royal jelly also appears to have a function in skeletal muscle metabolism. In mice, feeding of
R]J increases the serum IGF1 levels and stimulates regeneration of injured muscle via the IGF1-Akt
pathway in satellite cells [32]. Administration of R] also induces mitochondrial adaptation with
endurance training by adenosine monophosphate-activated protein kinase (AMPK) activation in the
soleus muscle of ICR mice [33]. Human clinical trials demonstrated that RJ has the potential to attenuate
the age-related decline in grip strength [34]. We recently compared the effects of enzyme-untreated
RJ (NRJ) with pR] on motor functions of aging mice and observed that both NRJ and pR] delayed
impairment of motor function during aging [35]. Furthermore, RJ treatment affected muscle fiber size
as well as the expression of satellite cell markers and catabolic genes [35].

Here, we demonstrate that daily feeding of pR] in mice cancels the in of muscle fiber size induced
by denervation. In addition, treatment of C2C12 myoblasts with pR] and pR]-related fatty acids
stimulated differentiation and proliferation.

2. Material and Methods

2.1. Denervation Model

C57BL/6] mice were purchased from CLEA Japan Inc. (Tokyo, Japan). Seven-week-old mice were
anesthetized, after which a 5 mm section of the sciatic nerve on the right leg was cut and excised. A
sham operation was performed on the left leg as a control [36]. Six days later, muscles were removed
and immediately frozen in isopentane cooled in liquid nitrogen or prepared for RNA extraction. All
mice were used in accordance with guidelines from the Kyushu Dental University Animal Care and
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Use Committee. All experiments were carried out with the approval of the Animal Use and Care
Committee of the Kyushu Dental University (Approval number #18-33).

2.2. Experimental Diet and pR] Treatment

Lyophilized protease-treated R] (pR], Lot No. YDP-M-170610) was prepared at Yamada Bee
Company, Inc. (Okayama, Japan). Protease-treated R] contained a standardized amount of specific fatty
acids (3.5% 10H2DA and 0.6% 10HDAA). Experimental diets were prepared by thoroughly mixing pR]J
with MF powder diet (Oriental Yeast, Tokyo, Japan) at a concentration of 1% (v/v) [35]. Four-week-old
C57BL/6 mice were fed control diet (1 = 7) or 1% pR] diet (n = 7) for 3 weeks pre-operation and for 6
days post-operation. Chow was refreshed every 2 days.

2.3. Histochemical Analysis

Tibialis anterior (TA) muscle was isolated after sacrifice and immediately frozen in chilled
isopentane and liquid nitrogen and stored at —80 °C [11]. Sections were stained with hematoxylin and
eosin (H&E). Images of sections were digitally captured with a BZ-II Analyzer (KEYENCE, Osaka,
Japan). The circumference of each fiber was outlined using Image] software (National Institute for
Health) to generate cross sectional area (CSA) of myofibers. Criteria for the selection of muscle fibers
to determine for CSA of myofibers included an intact, distinct cell membrane without significant signs
of folding or distortion. Elongated fibers indicating an oblique section were also excluded. Image
analysis was performed by two authors (A. M. and T. S.).

2.4. Cell Culture, Reagents, and Skeletal Muscle Differentiation

C2C12 cells and C3H10T1/2 cells were purchased from American Type Culture Collection
(Manassas, VA, USA). C2C12 cells and C3H10T1/2 cells were maintained as previously described [11]
and cultured in the presence of 0, 0.25, 0.5, or 1.0 mg/ml pR] solution. Fatty acids, where indicated,
were used at 500 uM [37]. pR] (Lot No. YDP-M-170610), Trans-10-hydroxy-2-decenoic acid (10H2DA),
10-hydroxydecanoic acid (10HDAA), 2-decenedioic acid (2DA), and sebacic acid (SA), were prepared at
Yamada Bee Company, Inc. (Okayama, Japan). Decanoic acid (DA) and docosahexaenoic acid (DHA)
were obtained from Fujifilm wako chemicals (Osaka, Japan).

Skeletal muscle differentiation in C2C12 cells was initiated by replacing growth medium (medium
supplemented with 10% fetal bovine serum) with differentiation medium (medium supplemented
with 2% horse serum) in sub-confluent cultures [11].

2.5. RNA Isolation and Quantitative Real-Time PCR (gPCR)

Total RNA was isolated from cells using a FastGeneTM RNA Basic Kit (Nippon Genetics, Tokyo,
Japan) and then reverse-transcribed into cDNA using High Capacity cDNA Reverse Transcription
Kit (Applied biosystems). SYBR green-based qPCR was performed in 96-well plates using PowerUp
SYBR Green Master Mix (ThermoFisher Scientific, Waltham, MA, USA) and a QuantStudio 3 Real-Time
PCR System (ThermoFisher Scientific). Expression levels were normalized to TATA box binding
protein (Tbp) using the 222Ct method [38]. The following primers were used for qPCR analyses:
murine atrogin-1 (primer sequences: forward, agtgaggaccggctactgtg; reverse, gatcaaacgcttgcgaatct),
murine murfl (primer sequences: forward, tgacatctacaagcaggagtgc; reverse, tegtcttegtgttecttge), murine
foxol (primer sequences: forward, cttcaaggataagggcgaca; reverse, gacagattgtggcgaattga), murine
myogenin (primer sequences: forward, ccttgctcagctccctca; reverse, tgggagttgcattcactgg), murine myoD
(primer sequences: forward, agcactacagtggcgactca; reverse, ggecgctgtaatccatcat), murine mck (primer
sequences: forward, cagcacagacagacactcagg; reverse, gaacttgttgtggetgttgc), murine cyclin A2 (primer
sequences: forward, cttggctgcaccaacagtaa; reverse, caaactcagttctcccaaaaaca), murine cyclin D1 (primer
sequences: forward, tttctttccagagtcatcaagtgt; reverse, tgactccagaagggcttcaa), murine cyclin E1 (primer
sequences: forward, tttctgcagcgtcatcctc; reverse, tggagcttatagacttcgcaca), murine Myhcl (primer
sequences: forward, aatcaaaggtcaaggcctacaa; reverse, gaatttggccaggttgacat), murine Myhc7 (primer
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sequences: forward, cgcatcaaggagctcacc; reverse, ctgcagecgcagtaggtt), murine Myhc2 (primer sequences:
forward, aactccaggcaaaagtgaaatc; reverse, cttggatagatttgtgttggattg), murine Myhc4 (primer sequences:
forward, aacccttaaagtacttgtctgactcaa; reverse, getattggtggcagctcag), murine IGF1 (primer sequences:
forward, agcagccttccaactcaattat; reverse, tgaagacgacatgatgtgtatctttat), murine IGFIR (primer sequences:
forward, gagaatttccttcacaattccatc; reverse, cacttgcatgacgtctctec), and murine tbp (primer sequences:
forward, ggcggtttggctaggttt; reverse, gggttatcttcacacaccatga).

2.6. Immunocytochemistry Analysis

C2C12 cells were incubated with primary antibody for 1 hour at room temperature after blocking
and permeabilization with phosphate-buffered saline containing 0.3% Triton X100 and 5% goat serum
for 30 minutes at room temperature. Anti-Myhc mouse monoclonal antibody (MF20, R & D Systems,
Minneapolis, MN, USA) or anti-Ki-67 rabbit polyclonal antibody (ab15580, Abcam) were used for
immunocytochemistry. Target proteins were visualized using Alexa 488-conjugated secondary antibody
(Invitrogen, Carlsbad, CA, USA) and imaged with an ABZ-9000 (Keyence, Tokyo, Japan) microscope.

2.7. Western Blot Analysis

Antibodies used for Western blot analysis were anti-Myogenin mouse monoclonal antibody (F5D,
Santa Cruz, Santa Cruz, CA, USA), anti-Myhc mouse monoclonal antibody (MF20, R & D systems,
Minneapolis, MN), anti-CyclinD1 mouse monoclonal antibody (72-13G, Santa Cruz), anti-Cyclin
A2 rabbit polyclonal antibody (GST103042, GenTex, Irvine, CA, USA), Phosopho-anti-AMPK«
(Thr172) Rabbit monoclonal antibody (40H9, Cell Signaling), anti-AMPK«x Rabbit monoclonal
antibody (D63G4, Cell Signaling), anti-Fbx32 (Atrogin-1) Rabbit monoclonal antibody (ab168372,
Abcam), and HRP-conjugated anti-Gapdh mouse monoclonal antibody (Proteintech, Chicago, IL,
USA). Target proteins were detected using anti-mouse or anti-rabbit IgG antibody conjugated with
horseradish peroxidase (Cell signaling, Beverly, MA, USA) and ImmunoStar LD (Fyjifilm wako
chemicals, Osaka, Japan).

2.8. Cell Proliferation Assay

Proliferation of C2C12 cells was assessed using a Cell Counting kit-8 (Dojindo, Kumamoto, Japan)
according to the manufacturer’s protocol [39].

2.9. Statistical Analysis

Comparisons were made using an unpaired analysis of variance (ANOVA) with Tukey—Kramer
post-hoc test and Wilcoxon’s signed rank test. The results are shown as the mean + S.D. The statistical
significance is indicated as follows: **, p < 0.01 and *, p < 0.05.

3. Results

3.1. pR] Attenuates Denervation-Induced Skeletal Muscle Atrophy

To examine the effect of pR] on skeletal muscle atrophy, C57BL/6 mice were fed on control or
PRJ diets for four weeks, and then muscle atrophy was induced by denervation. Daily feeding of pR]
for 1 month had no significant effect on total body weight (Figure 1A) or loss of total tibialis anterior
muscle weight induced by denervation (Figure 1B). However, pR] prevented the decrease in skeletal
muscle fiber diameter following denervation (Figure 1C,D). In order to determine the mechanism
by which pR] prevents the decrease in muscle fiber size, we next compared the expression levels of
atrophy, proliferation, or skeletal muscle differentiation genes. gPCR and Western blotting analysis
showed that pR] did not alter the expression of catabolic genes such as Atrogin-1 (Figure 2A and 2K),
Muscle ring finger protein 1 (MuRF1) (Figure 2B), or Forkhead box O-1 (Foxo-1) (Figure 2C). However, pR]
increased the expression of proliferation and differentiation-related genes such as Cyclin E1 (Figure 2D),
Cyclin A2 (Figure 2E), or Myogenin (Figure 2G). Protease-treated R] had no significant effect on the
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upregulation of Mychl (Figure 2H), Myhc2 (Supplementary Figure S1A), Myhc4 (Supplementary Figure
S1B), or Myhc7 (Supplementary Figure S1C). Protease-treated R] stimulated the upregulation of IGF-1
(Figure 2I) and IGF receptor (IGFR) (Figure 2]) and phosphorylation of AMPK (Figure 2K).
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Figure 1. Protease-treated royal jelly (pR]) prevents skeletal muscle atrophy following denervation.
The effect of dietary protease-treated royal jelly (pR]) on (A) total body weight and (B) wet weight of
tibialis anterior (TA) muscles following denervation (DN). (C) Representative images of TA muscle
cross-sections and (D) quantification of muscle cross-sectional area (CSA). Scale = 100 um. Data are
mean + SD (n = 10). #p < 0.01, versus sham-operated (Sham). *p < 0.05, versus control (Ctrl). No
significant difference (ND), versus Sham.
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Figure 2. pR] increased regeneration gene expression but does not influence atrophy gene expression.
(A-J) qPCR analysis of mRNA levels of Atrogin-1 (A), Murfl (B), Foxo-1 (C), Cyclin E1(D), Cyclin A2
(E), Cyclin D1 (F), Myogenin (G), Myhc1(H), IGF-1(I), or IGF receptor (IGFR)(J) in sham or denervated
muscle with or without 1% pR] feeding. Western blotting analysis showed the protein levels of pAMPK,
AMPK, Atrogin-1, and Gapdh in sham or denervated muscle with or without 1% pR] feeding (K). Data
are mean + SD (n = 7). #+p < 0.01, #p < 0.05, versus control (Ctrl).
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3.2. pR] Stimulates Myoblast Proliferation

Next, we examined the effect of pR] on proliferation using an in vitro cell culture system. C2C12
cells are from a murine myoblast cell line isolated from satellite cells [40] commonly used as an
in vitro model of muscle regeneration. Proliferating C2C12 cells will cease proliferation and promptly
differentiate into myofibers upon stimulation in a manner similar to satellite cells [11].

Protease-treated royal jelly treatment for 48 hours increased the number of cells (Figure 3A,B) as
well as the expression of cell-cycle-related genes (Figure 3C-F). Furthermore, Ki67 immunostaining
showed that pR] treatment increased the number of Ki67-positive proliferative cells (Figure 3G,H).
Trans-10-hydroxy-2-decenoic acid and 10-hydroxydecanoic acid are two fatty acids specifically occurring
in RJ. Trans-10-hydroxy-2-decenoic acid and 10-hydroxydecanoic acid can be metabolized into 2DA
and SA, respectively [41]. To determine whether RJ-derived fatty acids and/or their metabolic products
affect proliferation, C2C12 cells were treated with the indicated compounds for 24, 48, and 72 hours,
after which cell numbers were quantified by WST-8. As shown in Figure 4A, 10H2DA, 10HDAA,
2DA, and SA all significantly increased cell proliferation (Figure 4A). These R]-related fatty acids also
increased the protein levels of cell cycle genes such as Cyclin D1 and Cyclin A2 (Figure 4B).
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Figure 3. pR] stimulates proliferation of myoblasts in C2C12 cells. (A-B) C2C12 cells were treated with
0. 0.25, 0.5, or 1.0 mg/mL pR]J solution for 2 days. The number of living cells was assessed using Cell
Counting kit-8. Cells were treated with 1.0 mg/mL pR] for 2 days. After staining with trypan blue, the
number of living cells was determined by direct counting. Graphs show the ratio of number of cells
treated with pR] divided by control (B). (C-E) The mRNA levels of indicated genes in cells treated
with or without 1.0 mg/ml pR] for 2 days. (F) Western blot showing protein levels of Cyclin D1, Cyclin
A2, or Gapdh in C2C12 cells treated with 0. 0.25, 0.5, or 1.0 mg/mL pR] solution for 2 days. (G and H)
Images of Ki67 positive (+ve) immunostaining in cells treated with or without 1.0 mg/mL pR] (G). The
graph indicates the number of Ki67*V¢ cells as a percentage of total cells stained with DAPI (H). Images
are representative of multiple independent experiments (F and G). Scale bar corresponds to 100 um
(G). Data are mean + SD (n = 4). *+p < 0.01, *p < 0.05, versus control (Ctrl).
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Figure 4. R]-related fatty acids stimulate proliferation in C2C12 cells. (A) C2C12 cells were treated
with 500 uM 10H2DA, 10HDAA, 2DA, or SA for 0, 24, 48, or 72 hours after which the number of living
cells was assessed using a Cell-Counting kit-8. (B) Cells were treated with indicated fatty acids for 2
days, and the protein levels of Cyclin D1, Cyclin A2, and Gapdh were determined by Western blotting
(B). Data are mean =+ SD (n = 4). #p < 0.01, #p < 0.05, versus Dimethyl sulfoxide (DMSO) treatment
(A). Images are representative of multiple independent experiments (B). Abbreviations: 10H2DA:
Trans-10-hydroxy-2-decenoic acid; 10HDAA: 10-hydroxydecanoic acid; 2DA: 2-decenedioic acid; SA:
Sebacic acid.

3.3. pR] Stimulates Myoblast Differentiation

Finally, we examined the effect of pR] and R]-related fatty acid products on myoblast differentiation.
C2C12 cells were induced to differentiate in the presence or absence of pR]. Myosin heavy-chain
immunostaining showed that pR] treatment led to an increase in myotube formation compared to
control treatment cells (Figure 5A,B). Furthermore, pR] treatment elevated the expression level of
muscle differentiation genes such as MyoD, Myogenin, Mck, or Myhcl (Figure 5C-H). C3H10T1/2 cell
model is a mouse embryonic fibroblast cell line with myogenic potential. C3H10T1/2 cells, however,
do not normally express MyoD, a master regulator of myogenesis [42]. To evaluate the effect of pR]
on MyoD function, we overexpressed MyoD in C3H10T1/2 cells and then treated the cells with or
without pR]. qPCR analysis revealed that pR] treatment enhanced the induction of Myogenin and
Myhcl induced by MyoD (Figure 51,]). Treatment with 10H2DA, 10HDAA, 2DA, and SA increased
myotube formation (Figure 6A,B). The treatment of cells with these R]-related fatty acids increased the
protein levels of myogenic differentiation marker genes such as Myhc and myogenin (Figure 6C).
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Figure 5. pR]J stimulates myoblast differentiation. (A,B) C2C12 cells were treated with myogenic
medium supplemented with pR] at 0, 0.25, 0.5, or 1.0 mg/mL for 6 days. Cells were then stained
with anti-myosin heavy chain antibody (A). Fusion index was quantified as the number of nuclei (at
least three) within myotubes divided by the total number of nuclei (B). (C-F) Cells were treated with
myogenic medium together with or without 1 mg/ml pR] for 2, 4, or 5 days. mRNA levels of the
indicated myogenic markers were determined by qPCR. (G and H) C2C12 cells were treated with
myogenic medium supplemented with pR] at 0, 0.25, 0.5, or 1.0 mg/mL for 4 days (G) or treated with 1
mg/mL pR] for 2, 4, or 7 days (H). Western blots showing protein levels of myosin heavy chain (Myhc),
Myogenin, or Gapdh (G and H). (I and J) C3H10T1/2 cells were transfected with or without MyoD and
then treated with or without Img/mL pR]. mRNA levels of Myogenin or Myhcl were determined on
day 2 by qPCR. Representative images are shown. Scale = 100 um (A, G, and H). Data are mean + SD
(n =4). »p <0.01, *p < 0.05, versus control (Ctrl).
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Figure 6. R]-related fatty acids increase myoblast differentiation in C2C12 cells. (A—-C) C2C12 cells
were treated with myogenic medium along with 500 uM 10H2DA, 10HDAA, 2DA, or SA for 6 days.
Cells were then stained with anti-myosin heavy chain antibody (A). Fusion index was quantified as the
number of nuclei within myotubes (at least three) divided by the total number of nuclei (B). Western
blotting showing protein levels of myosin heavy chain (Myhc), Myogenin, or Gapdh determined (C).
Representative images are shown. Scale = 100 um (A and C). Data are mean + SD (1 = 4). =p < 0.01,
versus DMSO treatment.

4. Discussion

In this study, we demonstrate that feeding mice daily with pR] prevents a decrease in myofiber
size following denervation. In a previous study, we showed that pR]J affects muscle fiber size in
elderly mice without changing total muscle weight [35]. Our current findings did not conflict with this
study. Muscle weight during pathological conditions such as obesity, type 2 diabetes, or age-related
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Sarcopenia can be affected by the infiltration of adipose and/or connective tissue [43]. In our study, we
did not quantify the infiltration of adipose or connective tissue into the muscle tissue, even though pR]
treatment tended to increase muscle weight. It may be interesting to explore the effect of R] on the
infiltration of muscle by adipose and connective tissue. Our data showed that daily feeding with pR]
did not decrease the expression levels of atrophy-related genes such as Atrogin-1, Murf1, or Foxo-1
although our previous work showed that pR] feeding decreases atrophy-related gene expression during
aging [35]. This discrepancy might be explained by differences in the relative extent of atrophy induced
by denervation in comparison to aging. Nevertheless, differences between the two experimental
models may be helpful to clarify the effect of R] on skeletal muscle metabolism.

10-hydroxy-2-decenoic acid and 10-hydroxydecanoic acid, two major fatty acids contained in RJ,
are associated with health benefits such as anti-tumor activity [22], anti-hypersteatosis activity [23],
antibiotic activity [25], and anti-depression activity [26] in vitro and in vivo. After ingestion, 10H2DA
and 10HDAA are metabolized into 2DA and SA, respectively. 2-decenedioic acid and sebacic acid
can be detected in human plasma and urine samples, but 10H2DA and 10HDAA are not detected
following R]J intake [41]. Therefore, in cell culture models, 2DA and SA are useful in exploring the
function of 10H2DA and 10HDAA. In our present study, we found that 10H2DA, 10HDAA, 2DA, and
SA all regulated myogenesis of C2C12 cells, suggesting that fatty acids from R] may have a stronger
effect on myogenesis than others. Interestingly, decanoic acid (DA), which is non-hydroxylated at the
C-terminal, unlike RJ-derived decanoic acid (10HDAA), did not affect differentiation of C2C12 cells at
equimolar concentrations as RJ derived fatty acids (Supplementary Figure S2). These novel findings
may be useful for potential preventative and therapeutic applications for muscle atrophy since these
RJ fatty acids stimulate proliferation and differentiation myoblasts.

We observed that R] treatment stimulated both proliferation and differentiation. RJ stimulates
cell proliferation and increases the size of Myhc positive fibers in primary satellite cells isolated
from aged mice via upregulation of IGF-1 and IGFR [32]. In this study, R] treatment significantly
increased expression of IGF-1 and IGFR, suggesting that the IGF1-Akt pathway may contribute to
the phenotype. In in vivo experiments, R] treatment did not increase the expression levels of cyclin
D1, whereas R] treatment in vitro strongly increased cyclinD1. Currently, it is difficult to explain this
discrepancy. Furthermore, we could not reveal which cell types are proliferating and differentiating
in vivo following R] treatment. This will be an important issue to resolve in future studies.

Royal jelly has been known to regulate global epigenetic changes [44]. Epigenetic status is
maintained by the enzymes such as DNA methyltransferases, histone acetylases and deacetylases,
and histone methyltransferases and demethylases. These enzymes can be targeted by nutritional
factors [45]. Royal jelly and 10H2DA can inhibit histone deacetylase (HDAC) activity without affecting
DNA methylation [46]. As described above, 10H2DA possesses anti-tumor activity [22]. Interestingly,
valproic acid, an HDAC inhibitor, also inhibits angiogenesis in malignant tumors [47], and several
HDAC inhibitors are used in cancer treatment [48]. Inhibition of DNA methyltransferases and HDAC
have positive effects on myogenesis [49-53]. In our preliminary data, R] treatment enhanced myoblast
differentiation in C2C12 cells synergistically with 5-aza-2-deoxycytidine, a DNA methyltransferase
inhibitor (data not shown). However, R] treatment could not increase differentiation in the presence
of Trichostatin A, an HDAC inhibitor (data not shown), suggesting that R] may stimulate myoblast
differentiation via regulating HDAC activity. Further experiments are required to elucidate the
mechanism by which R] regulates skeletal muscle metabolism.

In conclusion, daily oral administration of pR] prevented a decrease in myofiber size following
denervation. pR] also increased the expression of regeneration-related genes in vivo. Although we
could not determine the proliferative cell population responding to pR] in vivo, pRJ and R]J related
fatty acids strongly stimulated proliferation and differentiation of C2C12 myoblasts in vitro.
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